
PARALLELIZATION OF POLYBENCH KERNELS symm AND gemver

Xudong Jiang, Shuhao Li, Rongxing Liu, Xin Hong, Junxiao Cao

Department of Computer Science
ETH Zürich

Zürich, Switzerland

ABSTRACT

As a suite of benchmarks representing typical computations
in diverse applications, Polybench is a useful tool for as-
sessing computing platform and compiler performance. Our
goal is to parallelize the symm and gemver kernels from
Polybench using OpenMP, CUDA, and MPI with various
optimization techniques, then evaluated the performance of
our implementations against different baselines.

1. INTRODUCTION

Motivation. Polybench[1] is a suite of polyhedral bench-
marks with static control flow for evaluating polyhedral com-
pilers such as polly[2]. It is also useful for other compiler
studies such as automatic parallelization. In this project, we
focus on the parallelization of Polybench. In addition, in-
stead of studying automatic polyhedral compiler optimiza-
tion, we investigate what can be achieved by human hand-
craft optimization and explore effective optimization tech-
niques. We choose 2 kernels with different characteristics
to explore different aspects of optimization: symm which
is typically compute-bound, and gemver which is typically
memory-bound. We tried using different parallel program-
ming paradigms and applied different optimization techniques
based on the distinct characteristics of each algorithm and
compared their performance and scalability to compiler au-
tomatic parallelization such as icc, polly [2] and state-of-
the-art implementations such as MKL, AOCL, and Open-
BLAS [3] under different configurations.

2. BACKGROUND

symm and gemver are basic linear algebra subprograms [4,
5] (BLAS), which are useful in scientific and engineering
applications.

symm. symm stands for Symmetric Matrix Matrix Mul-
tiplication which is available in current BLAS [4] imple-
mentations [3]. Given a symmetric matrix A with size M ×
M , dense matrices B and C with size M × N , two scalar
values α and β. The kernel needs to compute α ·AB+β ·C,

which is similar to the gemm kernel in BLAS, except that A
is a symmetric matrix with a special storage format. Specif-
ically, in Polybench, A is stored as a dense matrix in lower
triangular form.

gemver. gemver is part of the updated BLAS [5], which
is usually not included in current BLAS implementations. It
contains multiple matrix-vector multiplications and matrix
additions. Given two scalars α and β, seven vectors u1,
u2, v1, v2, x, y, z of length N , and a matrix A with size
N × N , the kernel does the following computations: A =
A+ u1v

T
1 + u2v

T
2 , x = β ·AT y + z, w = a ·Ax.

Related Works. Optimization for Level-3 BLAS such
as gemm and symm has been extensively studied in academia
and industry. The widely used OpenBLAS [3] is based on
GotoBLAS [6], which analyzed how to effectively utilize
multi-level cache hierarchy with multi-level blocking. An-
other work [7] provides an analytical model to find the opti-
mum blocking parameters. While these works achieve near
optimum single thread performance, other studies [8] ex-
plore the potential of parallelism by analyzing each level of
the loops. Another work [9] focuses on IO optimality for
distributed computation. We will try applying the optimiza-
tion techniques in previous works and try to achieve compa-
rable performance to state-of-the-art implementations such
as MKL, AOCL, and OpenBLAS. On the other hand, Level-
2 BLAS such as ger, gemv, and gemver are not a focus of
previous research, so we can explore potential optimization
techniques such as operator fusion, SIMD, and NUMA.

3. PROPOSED METHOD

We chose OpenMP and CUDA as the two parallel paradigms
for symm, and OpenMP and MPI for gemver.

3.1. OpenMP implementation of symm

We apply techniques used by previous studies on Level-3
BLAS [6, 7, 8], with the awareness of the hardware-specific
details such as SIMD, and CPU topology of Zen2 CPU on
Euler cluster.



Multi-level blocking. We apply multi-level blocking [6]
with optimal block size according to the analytical model in
[7]. Specifically, we use mr = 6, nr = 8 for register level
since each core in Zen2 CPU can issue 2 AVX-256 FMA
with 5 cycles latency. Then we use kc = 256, nc = 72 for
32KiB L1 and 512KiB L2 cache. Finally, we use a flexible
mc <= 4080 for a 16MiB L3 cache shared by 4 cores.

SIMD intrinsics. The multi-level blocking [6] packed
the original matrix to a buffer so that the blocked matrix ac-
cess will be continuous in memory, then perform efficient
register level matrix multiplication. Packing and inner ma-
trix multiplication kernels are important for performance, so
we explicitly write AVX intrinsic for these kernels. Specif-
ically for packing, we implement a fast register level trans-
pose by first transposing a 2x2 subblock without crossing
the lane and then permuting blocks across the lanes. In ad-
dition, we perform early checks of boundary conditions at
each block level to determine the relative position to the di-
agonal in A as early as possible.

CPU topology aware work distribution. Paralleliz-
ing multi-level blocking [6] like in [8] requires nested par-
allelism. However, currently, GCC OpenMP support for
nested parallelism is not satisfying because it will repeat-
edly fork and join threads in nested parallel regions instead
of using a thread pool. Therefore, instead of directly us-
ing OMP for, we set thread affinity and manually distribute
work according to CPU topology so that threads sharing the
same L3 cache can share the same A block.

Prepacking. Previous work [8] interleaves packing and
computation. However, OpenMP does not support fine-grained
barriers, and Vtune profiling results show that 26% of the
runtime was wasted on synchronization. By finishing all
the packing before computation, we only need 1 barrier and
reduce the drawback of coarse barrier in OpenMP, which is
worth the overhead of additional buffer access.

COSMA. We also tried the blocking in k-dimension as
suggested in COSMA [9], but it doesn’t help. Probably it
is because reducing communication in a single node is not
that important.

3.2. CUDA implementation of symm

As symm is only a special case of general matrix matrix
multiplication(gemm) kernels, lots of our ideas for optimiz-
ing the kernel comes from a blog talking about optimizing
CUDA gemm kernels[10].

We chose to implement our version of the symm kernel
in a row-major system and matrix A is stored as lower tri-
angular form.

Shared memory caching. Aside from global memory,
GPU has another type of memory called shared memory.
Shared memory is located on chip thus can achieve much
lower latency and higher bandwidth than global memory.
To make good use of this shared memory region, we can

BM

BK BK
BN

BN

BM

× =

Fig. 1: Shared memory blocking for doing gemm

compute Matrix Matrix Multiplication in a blocked fashion
as shown in Fig.1.

During computation, a thread block first load a block of
A and B into shared memory collaboratively. After finish-
ing loading the blocks, a small gemm on the loaded block is
done and the result gets accumulated into the current block
of C.

As we are dealing with symm, the loading of A’s blocks
into shared memory is a bit different from that of gemm.
When loading elements that are above diagonal, we actually
load the corresponding elements below the diagonal into the
shared memory.

Vectorized loading. Elements from global memory can
be loaded into shared memory more efficiently by using
vectorized loading. CUDA provides vector data type for
float as float4. Below is a sample line of code that we use
for transfering elements from global memory into shared
memory using vectorized loading.

1 reinterpret_cast<float4 *>(&As[curr_As_idx])[0] =
reinterpret_cast<const float4 *>(&A[
curr_A_idx])[0];

Adaptive loading of A. In a row major system, when
the block we are trying to load from A is entirely below the
diagonal, the block is natively stored as a row-major one.
When the block is entirely over the diagonal, then the cor-
responding block below the diagonal is actually stored as
column-major in the global memory. Therefore, to speed
up the loading from global memory to shared memory, we
can load the blocks of A adaptively into the shared mem-
ory as row or column major depend on whether the block is
entirely below or above diagonal. For non-adaptive loading
variants, we chose to always load blocks of A into shared
memory as column-major. In other words, for those blocks
natively stored as row-major in the global memory, we trans-
pose them in-place during loading.

Thread tiling. We can use a single thread on GPU to
compute multiple elements in the result matrix. This can re-
duce the total number of threads used thus reduce the over-
head of launching threads. Also, we can make better use of
registers, which is even after than shared memory, by using
each thread to handle a micro block in the result matrix. A
micro block of A and B first gets loaded into registers and a
thread performs a micro matrix matrix multiplication on the
blocks in registers to accumulate the result matrix.



Tensor Core. Aside from implementing matrix matrix
multiplication by ourselves, we also used Tensor Core to
perform the matrix matrix multiplication for us. Tensor
Core can compute C = AB + C on floats while sizes of
A, B and C are 16 × 8, 8 × 16 and 16 × 16 respectively.
One drawback for using Tensor Core is that Tensor Cores
are actually performing float arithmetics at a reduced pre-
cision. The data type used in Tensor Cores for A and B is
actually tf32 instead of float. Though having the same range
as float, tf32 actually has a machine epsilon that is equal to
the float16 (half) data type.

3.3. Gemver

We apply OpenMP and MPI for gemver parallization be-
cause OpenMP may provide lower overhead for a single
node and MPI can provide the ability to scale to multiple
nodes. The work is distributed according to rows of A. For
MPI, each process explicitly receives an equal portion of
A, while in OpenMP, the portion of the matrix is implicitly
allocated to the NUMA nodes of the corresponding thread
by the first touch policy. After the transposed matrix-vector
multiplication, the intermediate x vector is reduced, and the
final w vector is gathered after the non-transposed multi-
plication. The following discusses other optimization tech-
niques.

SIMD. In both MPI and OpenMP versions of gemver,
we explicitly wrote AVX SIMD intrinsics for vectorization.
The experiments showed that using this method led to a no-
table improvement in performance.

Operator fusion. In both the OpenMP and MPI ver-
sions of gemver, we fused the 2 rank-1 updates with the
first transposed matrix-vector multiplication, by computing
elements of A on the fly, which reduces 1 read of A.

Non-blocking MPI. We also tried using non-blocking
MPI calls to overlap computation and communication. How-
ever, this didn’t work well on the single-node experiments,
probably because there is no benefit of RDMA on a single-
node while the overhead of MPI calls increases.

Backward Looping. In the OpenMP version of gemver,
we also tried performing the second matrix-vector multipli-
cation by iterating over the corresponding part of A in re-
verse order, which allows us to reuse the recently used ele-
ments of A in the cache.

4. EXPERIMENTAL RESULTS

Experimental setup. We conducted all of our experiments
on the ETH Euler Cluster. We benchmarked our CPU ker-
nels on a single computing node with up to 128 cores be-
cause of privilege limits. GPU kernels were benchmarked
on an RTX 4090.

System Detail. Compute nodes in different phases of
Euler have different types of AMD CPUs, for consistent
measurement, we explicitly require nodes with 2 × AMD
EPYC 7H12 CPU, which have an on-demand frequency
governor with a range 1.5GHz - 2.6GHz, and a 3.3GHz
boost frequency. There are 2 × 64 cores in total, each
core can issue 2 AVX-256 FMA each cycle which allows
a 16 flops/cycle per core peak performance. The L1D, L2
are 8-way associative caches with size 32KiB, and 512KiB
respectively. A 16 MiB 16-way associative L3 cache is
shared by 4 cores in each CCX. There are 2 × 4 NUMA
nodes, each having 2 memory channels with 8B bus width,
which allows a 409.6 GB/s theoretical peak bandwidth with
the 3200MHz memory frequency. The operating system is
CentOS 7 with Linux kernel version 3.10.0. We use Open-
MPI 4.1.4 and GCC 11.4.0 compiler with -O3 -ffast-math
-march=native flags.

For experiments on CPU kernels, to utilize more mem-
ory channels, we spread threads to more NUMA nodes by
setting OMP PROC BIND=spread, except for experiments
for OpenBLAS baseline which will revert to single-thread
execution when this is set. We used mmap with flag MAP PR
IVATE and MAP ANONYMOUS to allocate new memory.
Before the initialization, we ran the tested kernel to touch
the memory to ensure the page was allocated to the core
that accesses it first.

We use CUDA 12.1.1 for GPU kernels and the building
was handled by CMake 3.26.3 with flag -DCMAKE BUILD
TYPE=Release. We confirmed that the compilation com-

mand generated by CMake in Release mode has ”-O3” en-
abled.

Measurements. We use LibLSB 0.2.2 compiled with
PAPI 7.0.1 for performance measurements. In OpenMP
benchmark executions, runtime was determined by the mas-
ter thread. In MPI benchmark executions, the runtime was
the median of individual process runtimes in each run, and
we excluded the time for initial data distribution. Exper-
iment runtimes, for both OpenMP and MPI benchmarks,
were represented by the median of all runs. We measure
under warm cache configuration with warmup runs. The
number of benchmark runs was adjusted to ensure a 95%
confidence interval within 5% of the median runtime.

For the CUDA versions of benchmarks, the runtime was
measured by the cudaEventElapsedTime function in mil-
liseconds. Each version of kernels were ran for multiple
profiling iterations. Within each profiling iteration, the num-
ber of runs of a kernel was determined to ensure each pro-
filing iteration lasts at least 100ms to reduce the overhead
of timing routines. The runtime of the kernel within a pro-
filing iteration was chosen to be the average runtime in that
iteration.

Baselines. For symm, there exist BLAS implementa-
tions including AOCL 4.1.0, MKL 2022.1.2, and OpenBLAS



0.3.26. To make MKL work efficiently on AMD CPU, we
override the mkl serv intel cpu true() to skip CPU detec-
tion. AOCL and OpenBLAS with multi-threading support
are compiled from source using GCC. We also tried auto-
matic compiler parallization such as icc 2021.5.0 and polly
with Clang 17.0.6. icc requires that the source codes are
contained in one file for successful parallelization, while
polly failed for parallizing symm. The symm in cublas li-
brary was used as our baseline for the CUDA version of our
symm kernel.

For gemver, lacking a suitable existing implementation,
we created a baseline using 2 ger, 2 gemv, and 1 axpy BLAS
kernels. We found that only OpenBLAS provides reason-
able performance. One reason may be because some BLAS
libraries such as AOCL do not parallelize some level-2 BLAS
kernels such as ger. We also tried icc 2021.5.0 and polly
with Clang 17.0.6, which both succeeded in parallelization.

4.1. OpenMP implementation of Symm

We implemented our kernel with multi-level blocking [7]
with specific block sizes. For simplicity, we currently only
focus on input sizes that are multiples of our block sizes.

Comparison to Baselines. Figure 2 and Figure 3 com-
pare the runtime and performance between our best OpenMP
kernel with other baselines on various problem sizes. We
achieve comparable results to AOCL and outperform MKL
and OpenBLAS, which may be because MKL and Open-
BLAS are not specifically optimized for Zen2 architecture.
For the icc automatic parallelization baseline, only results
with input size M = 2034 are shown here because others
are too slow. Polly [2] failed to parallize symm. For the
percentage of peak performance, the work is estimated at
2M2N + 2MN , and we use flops/s instead of flops/cycles
for performance because different cores may have different
frequencies. The peak performance is estimated using the
3.3 GHz boost frequency, which is 52.8 Gflops/s per core.
We also show how performance varies with input size in
Figure 5, and the performance is stable when the input size
is larger than 4608.

Potential bottleneck. Some of the performance drop
after 32 threads may be explained by the frequency drop
as shown in Fig. 4 We instrument PAPI to measure the fre-
quency of each core using PAPI TOT CYC and perf::TASK-
CLOCK PAPI event for cycle and time. The violin plot
shows the distribution of core frequency across all cores and
measurement runs. When the number of threads is larger
than 32, the probability of having a low-frequency core is
higher. Since the work is equally distributed across cores,
the frequency variation will cause an imbalanced runtime,
and more time will be wasted waiting for slow cores. Some
research [11] have investigated this issue, and this may be a
potential further improvement.

1 2 4 8 16 32 64 128
Number of Threads

101

102

103

104

105

106
Runtime (ms)

kernel
OpenMP
AOCL
MKL
OpenBLAS
icc
Compute Bound
M
2304
4608
9216
18432

Fig. 2: Comparison of OpenMP symm with baselines. Run-
time vs. number of threads for various input sizes. The
error bar denotes the 95% nonparametric confidence inter-
val of the median.

1 2 4 8 16 32 64 128
Number of threads

0

20

40

60

80

100 % peak performance M=2304

OpenMP
AOCL
MKL
OpenBLAS
icc

1 2 4 8 16 32 64 128
Number of threads

M=18432

Fig. 3: Comparison of OpenMP symm with baselines. Per-
formance vs. number of threads for various input sizes. The
error bar denotes the 95% nonparametric confidence inter-
val of the median.

4.2. CUDA implementation of symm

Performance Analysis. For a problem size s, the size of
matrices are determined to be M = N = s, and the work
is estimated to be 3s3 + 2s2. Therefore, after getting the
running time of the kernel in seconds, t, the performance
of the kernel can be computed as (2s3 + 3s2)/t. The peak
performance for single-precision computation on RTX 4090
is 82.58 TFlop/s. Then, the percentage of peak performance
reached of the kernel, on RTX 4090, can be derived as (2s3+
3s2)/(t×82.58×1012). In other words, lower running time
and higher performance are two interchangable terms in this
case.

Reference kernel using cublas. To compare with cublas,
we implemented two reference implementations using cublas.
Cublas requires the input matrices to be column-major. Line
cublas in Fig.6b shows the performance of the cublas ker-
nel in such column-major system. As we implemented all
our kernels for row-major matrices, to do fair comparison, a



1 2 4 8 16 32 64 128
Number of Threads

0

1

2

3

Frequency (GHz)

Fig. 4: Distribution of CPU frequency for different numbers
of threads with input size M = 2304 when running our
OpenMP symm kernel

0 2500 5000 7500 10000 12500 15000 17500
M

20

40

60

80

% peak performance

kernel
OpenMP
AOCL
Num threads
128
64
1

Fig. 5: Comparison of OpenMP symm with baselines. Per-
formance vs. Input Size M for various number of threads.
The error bar denotes the 95% nonparametric confidence in-
terval of the median.

row-major variant of the reference kernel was implemented
using CT = BTAT . The performance of this row-major
reference kernel is indicated as the cublas row line in Fig.6b.

Results. We consider two variants of our kernels to be
the best kernels that we’ve implemented. The runtime and
the performance curves of these two kernels are named with
WT and WMMA in Fig.6. The WT kernel is the kernel in
which we implemented our own version of matrix matrix
multiplication while the WMMA kernels are the ones we
use Tensor Cores to do the actual computation.

For the non Tensor Core kernel, WT, we did not imple-
ment the adaptive loading of A approach in 3.2 in it as we
found that this approach barely affect the performance in
the kernels that we had implemented before WT. We can
see clearly from Fig.6b that we have got better performance
than both variants of the cublas kernel. We manged to achieve
56% of RTX 4090’s peak performance for single-precision
computation with kernel WT. We believe this number can
be further improved with better tuning for the kernel’s hy-
per parameters.

For the WMMA kernels, we tried the adaptive loading
of A approach as Tensor Core provides us with a native way
do to matrix matrix multiplications with operands can be ei-
ther row or column major. Unfortunately, the non-adaptive
approch beats the performance of the adaptive one accord-
ing to Fig.6b. The non-adaptive WMMA kernel achieved
84% of RTX 4090’s peak performance.

We think the reasons for the adaptive loading approch
did not work as expected is listed as follows. For non Tensor
Core kernels, the cost of doing inplace transpose of blocks

512 1024 2048 4096 8192 16384
Matrix size

10
1

10
1

Runtime (ms)

WT
WMMA
WMMA_ada
cublas
cublas_row
lower bound

(a) Running time of kernels on different problem sizes

512 1024 2048 4096 8192 16384
Matrix size

25%

50%

75%
% peak performance

WT
WMMA
WMMA_ada
cublas
cublas_row

(b) Percentage of peak performance reached

Fig. 6: Runtime and Percentage of peak performance
reached of our best CUDA symm kernels on different prob-
lem sizes. Error bar denote the 95% nonparametric confi-
dence interval of the median. Dashed lines represent the
performance of cublas kernels.

of A is low comparing to the actual computation part as
such transpose is done in registers. For the WMMA ker-
nels, as the actual computations in Tensor Cores are hidden
from us, we can only take guesses for the reason why the
adaptive variant have worse performance. It is possible that
the actual Tensor Core implementation can only handle case
which operand A is column-major while operand B as row-
major. If A is given as row-major, it might need to do in-
place transpose for operand A every single time which leads
to additional cost.

When using Nsight Compute to profile all the kernels,
we found that cublas’s symm consists of three CUDA ker-
nels. In comparison, our kernels only consists of a single
CUDA kernel, which has lower overhead comparing to the
composited approach used in cublas. On the other hand, the
symm kernel itself in cublas might not be a well-optimized
one. We also tried to benchmark the gemm kernel using
fully-filled symmetric matrix A and found that gemm takes
only about half the time to finish comparing to symm.

4.3. gemver

We first compared our results to baselines in strong scaling
and weak scaling configurations, then we showed how the
performance varies with different input sizes.

We also established a runtime lower bound under mem-
ory bandwidth constraints, employing conservative data trans-
fer estimates for our warm cache configuration. Assum-
ing all vectors can fit in the L2 cache, and the entire L3
cache can be dedicated to a portion of matrix A, we cal-
culated compulsory data transfer as 2 loads and 1 write of
the remaining part of A. This totals 3(8 · N2 − C) bytes,



Threads 1 2 4 8 16 32 64 128

Bandwidth 29.4 53.8 107.7 213.1 316.7 332.0 323.6 306.1

Table 1: Peak Memory Bandwidth in GB/s. Measured
by stream mem avx in likwid-bench. According to[12],
threads are spread across NUMA nodes and CCXs to get
maximum bandwidth.

with N as the input size and C as the total L3 cache size.
Threads were spread across CCXs for a maximal total L3
cache. The maximum cache size available for n threads was
the lesser of 512 MiB or n ∗ 16 MiB. Since the theoretical
peak bandwidth is far from reality we measured the peak
memory bandwidth using stream mem avx benchmark in
likwid-bench 5.3 as shown in Table 1. The runtime lower
bound was then derived using the measured peak memory
bandwidth and data transfer lower bound.

1 2 4 8 16 32 64 128
Number of Threads

102

103
Runtime (ms)

OpenMP
MPI
polly
icc
OpenBLAS Composed
Memory Bound

Fig. 7: Strong Scaling for gemver compared with baselines.
The error bar denotes the 95% nonparametric confidence
interval of the median. N = 16384

Strong Scaling. The Fig. 7 showed that both of our
kernels surpassed the baselines, exhibiting effective strong
scaling from using 1 to 16 threads or processes. The best
performance was achieved with 32 threads, aligning with
the peak memory bandwidth in Table 1. Using more than 32
threads will not increase total L3 cache size while the total
memory bandwidth decreases. Additionally, the best kernel
of the OpenMP version ran faster than that of the MPI ver-
sion. In our early experiments, MPI version achieves better
scaling, however, when further techniques such as NUMA
is performed, OpenMP can outperform MPI in a single node
because of its lower overhead.

Weak Scaling. Given the complexity of our gemver
problem, we scaled the problem size by

√
2 as the number

of processes or threads doubled, maintaining a consistent
workload for each process or thread through out all the ex-
periments. The specified configurations for the number of
processes or threads its corresponding problem size in each
experiment are as follows: 1:2048, 2:2896, 4:4096, 8:5792,
16:8192, 32:11648, 64:16384, and 128:23040. Fig.8 showed
that both of our kernels outperformed the baseline, demon-
strating effective weak scaling from 1 to 16 threads or pro-

1 2 4 8 16 32 64 128
Number of Threads

0

50

100

150

Runtime (ms)
OpenMP
MPI
polly
icc
OpenBLAS Composed
Memory Bound

Fig. 8: Weak Scaling for gemver compared with baselines.
The error bar denotes the 95% nonparametric confidence
interval of the median

cesses. Then, the runtime increases since the memory band-
width is saturating.

Performance. We plotted the performance for various
input sizes using 8, 32, 128 threads or processes respec-
tively, estimating the total work as 10n2 + n, where n rep-
resents the input size. The upper bound was derived from
the runtime lower bound and the estimated work. Fig. 9

2000 4000 6000 8000 10000 12000 14000 16000
N

0

100

200

300

400

500

600

Performance (GFlops/s)
kernel
OpenMP
MPI
Memory Bound
Num Threads
128
32
8

Fig. 9: Performance plot of gemver

showed that both the OpenMP and MPI kernels exhibited
improved performance in the initial stage as the input size
increases while still fitting in the L3 cache. However, per-
formance started to decline after reaching its peak when the
input size started surpassing the capacity of the L3 cache,
and the performance is bounded by the memory bandwidth
bound.

5. CONCLUSIONS

We have successfully implemented symm kernels in CUDA
with and without using Tensor Core. Both versions of ker-
nel out-performed the available symm kernel in the cublas li-
brary. The OpenMP implementation of symm kernels demon-
strated better performance compared to MKL and Open-
BLAS, achieving results comparable to AOCL in our testing
environment. Both OpenMP and MPI implementations of
gemver kernels outperformed the baseline composed from
OpenBLAS. However, due to hardware limitation, we did
not manage to measure cache misses. Further investigation
regarding cache behaviour might be carried out in the fu-
ture.



6. REFERENCES

[1] Louis-Noel Pouchet and Tomofumi Yuki, “Poly-
bench/c,” .

[2] Tobias Grosser, Armin Größlinger, and Christian
Lengauer, “Polly - performing polyhedral optimiza-
tions on a low-level intermediate representation,” Par-
allel Process. Lett., vol. 22, 2012.

[3] Qian Wang, Xianyi Zhang, Yunquan Zhang, and Qing
Yi, “Augem: Automatically generate high perfor-
mance dense linear algebra kernels on x86 cpus,” in
SC ’13: Proceedings of the International Conference
on High Performance Computing, Networking, Stor-
age and Analysis, 2013, pp. 1–12.

[4] J. J. Dongarra, Jeremy Du Croz, Sven Hammarling,
and I. S. Duff, “A set of level 3 basic linear algebra
subprograms,” ACM Trans. Math. Softw., vol. 16, no.
1, pp. 1–17, mar 1990.

[5] “An updated set of basic linear algebra subprograms
(blas),” ACM Trans. Math. Softw., vol. 28, no. 2, pp.
135–151, jun 2002.

[6] Kazushige Goto and Robert A. van de Geijn,
“Anatomy of high-performance matrix multiplica-
tion,” ACM Trans. Math. Softw., vol. 34, no. 3, may
2008.

[7] Tze Meng Low, Francisco D. Igual, Tyler M. Smith,
and Enrique S. Quintana-Orti, “Analytical modeling is
enough for high-performance blis,” ACM Trans. Math.
Softw., vol. 43, no. 2, aug 2016.

[8] Tyler M. Smith, Robert van de Geijn, Mikhail
Smelyanskiy, Jeff R. Hammond, and Field G. Van Zee,
“Anatomy of high-performance many-threaded matrix
multiplication,” in 2014 IEEE 28th International Par-
allel and Distributed Processing Symposium, 2014,
pp. 1049–1059.

[9] Grzegorz Kwasniewski, Marko Kabić, Maciej Besta,
Joost VandeVondele, Raffaele Solcà, and Torsten Hoe-
fler, “Red-blue pebbling revisited: Near optimal par-
allel matrix-matrix multiplication,” in Proceedings of
the International Conference for High Performance
Computing, Networking, Storage and Analysis, New
York, NY, USA, 2019, SC ’19, Association for Com-
puting Machinery.

[10] Simon Boehm, “How to optimize a cuda matmul
kernel for cublas-like performance: A worklog,” Dec
2022.

[11] Xing Su and Fei Lei, “Hybrid-grained dynamic load
balanced gemm on numa architectures,” Electronics,
vol. 7, no. 12, 2018.

[12] Markus Velten, Robert Schöne, Thomas Ilsche, and
Daniel Hackenberg, “Memory performance of amd
epyc rome and intel cascade lake sp server proces-
sors,” in Proceedings of the 2022 ACM/SPEC on In-
ternational Conference on Performance Engineering.
Apr. 2022, ICPE ’22, ACM.


